今天是:

师资队伍

金融工程系

当前位置: bat365在线登录网站 >> 师资队伍 >> 教师简介 >> 金融工程系 >> 正文

葛红霞

发布日期:2024-05-08    作者:     来源:     点击:

基本信息:

葛红霞,女,博士,教授。E-mail:gehongxia@nbut.edu.cn

研究方向:

交通流,行人流

科研经历:

主持的科研项目:

1、国家自然科学基金委员会,面上项目,71571107,有轨电车优先通行管理控制策略对交叉路口车流运行影响的机理研究,2016.1-2019.12,48.7.

2、国家自然科学基金委员会,面上项目,11072117,基于视频的交通流建模及其参数全息标定研究,2011.1-2013.12,42万元.

3、国家自然科学基金委员会,青年基金,10602025 , 面向智能交通系统的交通流建模与密度波分析,2007-01至2009-12,21万元.

4、浙江省自然科学基金面上项目:2016.1-2018.12.

5、浙江省自然科学基金面上项目:2020.1-2022.12.

6、省部级实验室开放基金项目:2014.11-2015.12.

7、宁波市自然科学基金项目(4项):2014.7-2016.12;2012.7-2013.12;2009.7-2011.06;2007.06-2009.11.

8、浙江省教育厅一般项目:2006.08-2008.06.

9、浙江省教育厅优秀青年项目:2008.12-2009.11.

发表的主要学术论文:

[1]Ge, H.X., Dai, S.Q., Dong, L.Y. and Xue, Y., Stabilization effect of traffic flow in an extended car-following model based on an intelligent transportation system application,Phys. Rev. E, 2004, 70: 066134.

[2]Ge, H.X., Dai, S.Q. and Dong, L.Y., An extended car following model based on intelligent transportation system application,Physica A, 2006, 365: 543-548.

[3]Ge, H.X., Dai, S.Q., Xue, Y. and Dong, L.Y., Stabilization analysis and modified Korteweg–de Vries equation in a cooperative driving system,Phys. Rev. E, 2005, 71: 066119.

[4]Ge, H.X., Cheng, R.J.and Dai, S.Q., KdV and kink-antikink solutions in car following models,Physica A, 2005, 357: 466-476.

[5]Ge, H.X., Zhu, H.B. andDai, S.Q., Effect of looking backward on traffic flow in a cooperative

driving car following model,Eur. Phys. J. B, 2006, 54: 503–507.

[6]Ge, H.X.and Cheng, R.J., The “backward looking” effect in the lattice hydrodynamic model,Physica A,2008, 387: 6952-6958.

[7]Ge, H.X., Cheng, R.J. and Li, Z.P.,Two velocity difference model for a car following theory,Physica A, 2008, 387: 5239–5245.

[8]葛红霞,程荣军,李志鹏,考虑双速度差效应的耦合映射跟驰模型,物理学报, 2011, 8: 080508.

[9]Ge, H.X.,Wu, S.Z., Cheng, R.J. and Lo, S.M.,Theoretical analysis of a modified continuum model,Chin. Phys. Lett., 2011, 28: 090501.

[10]Wu, S.Z.,Cheng, R.J.andGe, H.X., Time-dependent Ginzburg–Landau equation for two velocityDifference model,Chin. Phys. B, 2011, 20: 080304.

[11]刘玉霞,程荣军,冯秀芳,葛红霞,扩张道路收费站的元胞自动机模型,力学学报,2011, 43: 1-6, 2011.

[12]Ge, H.X.,Liu, Y.X. andCheng, R.J., A modified coupled map car following model and its traffic congestion analysis,Commun. Nonlinear Sci., 2012, 17: 4439-4445.

[13]Ge, H.X.,Lai, L.L.,Zheng, P.J. andCheng, R.J., The KdV–Burgers equation in a new continuum model with consideration of driver’s forecast effect and numerical tests,Phys. Lett. A, 2013, 377: 3193–3198.

[14]Lai, L.L., Cheng, R.J., Li, Z.P. andGe, H.X.,The KdV–Burgers equation in a modified speed gradient continuum model,Chin. Phys. B, 2013, 22: 060511.

[15]Ge, H.X.,Cheng, R.J. andLo, S.M.,Time-dependent Ginzburg Landau equation for lattice hydrodynamic model describing pedestrian flow,Chin. Phys. B, 2013, 22: 070507.

[16]Ge, H.X.andCheng,R.J.,Meshless method based on moving Kriging interpolation fortwo-dimensionaltime-fractional diffusion equation,Chin. Phys. B, 2014, 23:040203.

[17]Ge, H.X., Zheng, P.J., Lo, S.M.and Cheng, R.J., TDGL equation in latticehydrodynamic model considering driver's physical delay,Nonlinear Dyn.,2014, 76: 441-445.

[18]Ge, H.X.,Lo, S.M. and Cheng, R.J., A bidirectional pedestrian flow model withthe effect of friction parameter,Int. J. Mod. Phys. C,2014, 25: 1450042.

[19]Ge,H.X., Lv,F., Zheng,P.J.andCheng,R.J., The time-dependent Ginzburg-Landau equation for car-following model considering anticipation behavior,NonlinearDyn.,2014, 76: 1497-1501.

[20]Ge,H.X.,Cui,Y., Zhu,K.Q. andCheng,R.J.,The control method for the lattice hydrodynamic model,Commun. Nonlinear Sci., 2015, 22: 903-908,

[21]Zheng,Y.Z.,Cheng,R.J., Lo,S.M. andGe,H.X.,Stability analysis of traffic flow with extended CACC control models,Chin. Phys. B, 2016, 25: 060505.

[22] Liu,F.X.,Cheng,R.J.,Zheng,P.J. andGe,H.X., TDGL and mKdVequations for car-following model considering traffic jerk,Nonlinear Dyn., 2016,83:793–800.

[23] Liu, H.Q.,Cheng,R.J.,Zhu, K.Q. andGe,H.X., The study for continuummodel considering traffic jerk effect,Nonlinear Dyn., 2016, 83:57–64.

[24]Song,H.,Ge,H.X.,Chen,F.Z. andCheng,R.J.,TDGL and mKdV equations for car-following model considering traffic jerk and velocity difference,Nonlinear Dyn.,2017, 87:1809-1817.

[25]Cheng,R.J., Liu,F.X. andGe,H.X.,A new continuum model based on full velocity difference model considering traffic jerk effect,Nonlinear Dyn.,2017, 89: 639-649.

[26]Song,H., Zheng,P.J. andGe,H.X.,TDGL and mKdV equations for an extendcar-following model,Nonlinear Dyn.,2017,90:2253-2262.

[27]Jin,Z.Z., Cheng,R.J. andGe,H.X.,Nonlinear density wave investigation for anextended car-following model consideringdriver's memory and jerk,Mod.Phys.Lett.B, 2018, 32:1750366.

[28]Jiang,C.T.,Cheng,R.J. andGe,H.X.,Animprovedlattice hydrodynamicmodel considering the “backward looking” effect and the traffic interruptionprobability,Nonlinear Dyn., 2018,91:777-784.

[29]Jin,Z.Z., Yang,Z.L. andGe,H.X.,Energy consumption investigation for a new car-following model considering driver's memory and average speed of the vehicles,Physica A, 2018,506: 1038–1049.

[30]Wang,J.F.,Sun, F.X. andGe,H.X.,Effect of the driver’s desire for smoothdriving on the car-following model,Physica A,2018, 512: 96-108.

[31] Wang, Q.Y. andGe,H.X.,An improved lattice hydrodynamic model accounting for the effect of "backward looking" and flow integral,Physica A,2019, 513: 438-446.

[32]Jiang,C.T.,Cheng,R.J. andGe,H.X.,Mean-field flow difference model with consideration of on-ramp and off-ramp,Physica A,2019, 513: 465-467.

[33]Wang, Z.H.,Cheng,R.J. andGe,H.X.,Nonlinear analysis of an improved continuum model considering mean-field velocity difference,Phys. Lett. A,2019, 383: 622-629.

[34]Wang Ting, Cheng Rongjun,Ge Hongxia,Analysis ofa noveltwo-lane lattice hydrodynamic model consideringtheempirical lane changing rate andthe self-stabilization effect,IEEEAccess, 7(2019)174725-174733

[35]Qi Xinyue, Cheng Rongjun,Ge Hongxia, Analysis of a novel two-lane lattice model with consideration of density integral andrelative flow information,Engineering Computations,37(2020)2939-2955.

[36]WangQingying,Ge Hongxia, Cheng Rongjun,A newtwo-lane lattice hydrodynamic model consideringthe traffic interruption probabilityunder honk environment,Complexity,2020(2020) 1-12.

[37]Jiao Yulei, Cheng Rongjun,Ge Hongxia,A new continuum model consideringdriving behaviors and electronic throttle effect on a gradient highway,Mathematical Problems in Engineering, 2020(2020):1-22.

[38]Wang Ting, Cheng Rongjun,Ge Hongxia,Analysis of an extended two-lane lattice hydrodynamic model considering mixed traffic flow and self-stabilization effect,Engineering Computations,2021, 38(1):58–82.

[39]Qi Xinyue,Ge Hongxia,Cheng Rongjun,Analysis ofanovel two-lane lattice hydrodynamic model accounting fordriver’saggressive effectandflow differenceintegral,Mathematical Problems in Engineering, 2020,8258507:1-13.

[40]Li Shihao,Ge Hongxia,An improvedcar-following model considering electronic throttle dynamics anddelayed velocity difference,Physica A558(2020) 125015.

[41]Li Shihao, Wang Ting, Cheng Rongjun,Ge Hongxia,Anextendedcar-following model considering the driver’s desire for smooth driving andself-stabilizing controlwith velocity uncertainty,Mathematical Problems in Engineering, 2020, 9546012:1-17.

[42]WangQingying, Cheng Rongjun,Ge Hongxia,A newtwo-lane lattice hydrodynamic model on a curved road accounting for the empirical lane-changing rate,Engineering Computations, 2020.

[43]WangQingying, Cheng Rongjun,Ge Hongxia,A novel lattice hydrodynamic model accounting for driver’s memory effect and the difference of optimal velocity on curved road,Physica A,559 (2020) 125023.

[44]LiShihao, Cheng Rongjun,Ge Hongxia, Pengjun Zheng, An extended car-following model integrating average speed and electronic throttle dynamics of multiple preceding vehicles,Engineering Computations, 37(2020)1645-1661.

[45]Ren Weilin, Cheng Rongjun,Ge Hongxia,WeiQi,Bifurcation control in an optimal velocity model via double time-delay feedback method,IEEE Access, 8(2020)216162-216174.

[46]LiHuizhe,Ge Hongxia,Cheng Rongjun,An extendedcar-following modelconsideringthe effect oftwo-sideslateral gapwith uncertain velocity oncurvedroad,2021,EngineeringComputation.

[47]LiuHuimin,Cheng Rongjun,Ge Hongxia,Anoveltwo-lane lattice hydrodynamic modelon a gradient road consideringheterogeneoustraffic flow,MPLB,2021,2150340.

[48]Jiao Yulei, Cheng Rongjun,Ge Hongxia,Anoveltwo-lane continuum model considering driver’s expectation and electronic throttle effect,MPLB,35 (2021) 2150385.

[49]Ren Weilin, Cheng Rongjun,Ge Hongxia,Bifurcation analysis of a heterogeneous continuum traffic flow model,Applied Mathematical Modelling, 94(2021)369-387.

[50]Ren Weilin, Cheng Rongjun,Ge Hongxia,Bifurcation analysis for a novel heterogeneous continuum model considering electronic throttle angle changes with memory,Applied Mathematics and Computation, 401 (2021) 126079.

[51]Guan Xueyi, Cheng Rongjun,Ge Hongxia,Bifurcation control of optimal velocity model throughanticipatedeffectand response time-delay feedback methods,PhysicaA,574(2021)125972.

[52]Zhen Yaxing,Ge Hongxia, Cheng Rongjun,An extendedlattice hydrodynamic modelconsidering the average optimal velocity effect field and driver’s sensory memory,MPLB, 20(2021),2150335.

教学经历

本科:《智能运输系统》,《高等数学》,《线性代数》,《运筹学》,

《复变函数与积分变换》《数学物理方程》等

硕士:《智能交通系统》

育人经历:

指导本科生完成省新苗项目1项,发表SCI学术论文3篇.

荣誉获奖

1、2008年全国优秀博士学位论文提名论文

2、2009年入选“浙江省新世纪151人才工程”第三层次培养计划

3、指导的研究生4人获“省优”,5人获“国家奖学金”

4、2015宁波市自然科学科技进步三等奖

5、2014宁波大学青年学术创新二等奖

©版权所有 bat365(中国)在线平台官方网站-登录入口

地址:宁波市江北区风华路201号

联系电话:0574-87617119

网址: /

理学院公众号
招生咨询QQ群
企业联盟QQ群
网站地图